The Galerki Approach for Finite Elements of Field Functions: The Case of Buckling in GRP
نویسنده
چکیده
This paper used the equation of the deflected axis of a beam to present procedures for solving one-dimensional functions that can be expressed in the form of Poisson equation. The equation of the deflected axis of a beam was solved for deflection for GRP composite component by Finite Element Method (FEM) using integrated FEM-Galerki approach to derive the finite elements equations. The critical stress of GRP structure at the onset of structural instability was computed as 14.162 MPa using Euler relation while the maximum bending moment, a subject in the equation of the deflected axis of a beam of structure was also estimated with classical relation. The equation of the deflected axis of the beam is then solved as a one dimensional Poisson equation following FEM-Galerki approach for deriving element equation. The maximum optimum deflection a measure of maximum instability occurring around the mid span of element of structure was estimated. Also the finite element predicted results were compared with analytical results and the finite element results captured the general trend of the analytical results.
منابع مشابه
NONLINEAR POST-BUCKLING ANALYSIS OF ISOTROPIC PLATES BY USING FINITE STRIP METHODS
ABSTRACT This paper presents the theoretical developments of two finite strip methods (i.e. semi-analytical and full-analytical) for the post-buckling analysis of isotropic plates. In the semi-analytical finite strip approach, all the displacements are postulated by the appropriate shape functions while in the development process of the full-analytical approach, the Von-Karman’s equilibrium equ...
متن کاملA New Approach to Buckling Analysis of Lattice Composite Structures
Buckling strength of composite latticed cylindrical shells is one of the important parameters for studying the failure of these structures. In this paper, new governing differential equations are derived for latticed cylindrical shells and their critical buckling axial loads. The nested structure under compressive axial buckling load was analyzed. Finite Element Method (FEM) was applied to mode...
متن کاملBuckling Analysis of Simply-supported Functionally Graded Rectangular Plates under Non-uniform In-plane Compressive Loading
In this research, mechanical buckling of rectangular plates of functionally graded materials (FGMs) is considered. Equilibrium and stability equations of a FGM rectangular plate under uniform in-plane compression are derived. For isotropic materials, convergent buckling loads have been presented for non-uniformly compressed rectangular plates based on a rigorous superposition fourier solution f...
متن کاملBending, Buckling and Vibration of a Functionally Graded Porous Beam Using Finite Elements
This study presents the effect of porosity on mechanical behaviors of a power distribution functionally graded beam. The Euler-Bernoulli beam is assumed to describe the kinematic relations and constitutive equations. Because of technical problems, particle size shapes and micro-voids are created during the fabrication which should be taken into consideration. Two porosity models are proposed. T...
متن کاملBuckling Study of Thin Tank Filled with Heterogeneous Liquid
Buckling of imperfect thin shell tank which is subjected to uniform axial compression is analyzed. The effect of internal pressure on the stability of a shell tank filled with a homogeneous-heterogeneous liquid was considered. Investigation of the liquid nature effect on reduction of the shell buckling load is performed by using the finite elements method. Calculating results in terms of analyt...
متن کامل